

COMPREHENSIVE REPORT
BEAST

HYBRID APPLICATION ASSESSMENT 2017
DECEMBER 8, 2017

Bishop Fox™ Confidential 2017/12/08 2

This engagement was performed in accordance with the Statement of Work, and the procedures were limited

to those described in that agreement. The findings and recommendations resulting from the assessment are

provided in the attached report. Given the time-boxed scope of this assessment and its reliance on client-

provided information, the findings in this report should not be taken as a comprehensive listing of all security

issues.

Bishop Fox Contact Information:

+1 (480) 621-8967

contact@bishopfox.com

8240 S. Kyrene Road

Suite A-113

Tempe, AZ 85284

mailto:contact@bishopfox.com

Bishop Fox™ Confidential 2017/12/08 3

TABLE OF CONTENTS

Table of Contents .. 3

Summary.. 4

Project Overview.. 4

Summary of Findings .. 7

Assessment Report ... 10

Hybrid Application Assessment ... 10

Denial of Service .. 10

Insecure Randomness ... 15

Appendix A — Measurement Scales ... 19

Finding Severity .. 19

Appendix B — Secure Development with Beast ... 20

Bishop Fox™ Confidential 2017/12/08 4

SUMMARY

Project Overview

The author of Beast, Vinnie Falco, engaged Bishop

Fox to assess the security of the Boost C++ Beast

HTTP/S networking library. The following report

details the findings identified during the course of

the engagement, which started on September 11,

2017.

Goals
• Identify critical- and high-risk issues (especially

memory corruption issues) in the Beast library

that could be exploited to subvert expected

application behavior

• Review Beast for security vulnerabilities with a

focus on those documented by OWASP and

specific to web application technologies

• Determine whether the design of the Beast

library meets secure-by-design principles

• Thoroughly fuzz the example advanced-

server Beast library application

• Perform a manual review of Beast library

application source code to uncover subtle

implementation issues that may impact library

security

Finding Counts

1 High

1 Medium

2 Total findings

Scope

Beast Library v.124

SHA1 Commit Hash

9dc9ca13b9c08c1597d0

5bcf6c19be357e426041

Please see the Summary’s

Additional Resources for a link to

v.124 commit and the author’s

public key

Dates

09/11/2017

Kickoff

09/11/2017 – 10/31/2017

Active testing

12/8/2017

Report delivery

Approach
The assessment team conducted a hybrid application assessment of the Beast library.

Bishop Fox’s hybrid application assessment methodology leverages real-world attack

techniques through application penetration testing in combination with targeted source

code review to identify application security vulnerabilities. These full-knowledge

assessments begin with automated scans of the deployed application and source code.

Next, analyses of the scan results are combined with manual review to identify potential

application security vulnerabilities. In addition, the team performs a review of the

application architecture and business logic to locate any design-level issues. Finally, the

team performs manual exploitation and review of these issues to validate the findings.

Bishop Fox™ Confidential 2017/12/08 5

The team considered it important to assess the application in a live environment using

modern fuzzing frameworks, including both honggfuzz and afl-fuzz, as well as to

identify security vulnerabilities through manual source code review.

All references to Beast in this report are to version 124.

Fuzzing Strategy

A primary goal of the engagement was to identify vulnerabilities in the HTTP and

WebSocket protocol parsing implementations. As such, the advanced-server

application was chosen as it implemented a basic HTTP and WebSocket server,

exercised significant portions of the Beast library, and simultaneously reduced the

amount of custom code needed to get up and running. The advanced-server is found

at the following location:

https://github.com/boostorg/beast/tree/v124/example/advanced/server

The engagement team modified the advanced-server code using the following steps

to prepare Beast for fuzzing:

1. Start the HTTP server on a randomized port.

2. Read the payload to be sent from a user-specified command-line filename

argument.

3. Select the fuzzing mode based on a user-supplied value. (Three modes were

implemented: HTTP server fuzzing, WebSocket protocol fuzzing, and

WebSocket per-message deflate fuzzing.)

4. Connect to the server.

a. If fuzzing the HTTP implementation, simply write the payload as is to the

socket stream.

b. If fuzzing the WebSocket protocol implementation, perform the

WebSocket upgrade request, and then write the raw WebSocket protocol

frame bytes to the socket stream.

c. If fuzzing the WebSocket per-message deflate implementation, prepare

the WebSocket frame header manually, apply the frame header mask

value to the payload, and write the resulting frame to the socket stream.

5. Close the connection.

The engagement team used wireshark to observe the correctness of the fuzzing code,

as shown below:

Bishop Fox™ Confidential 2017/12/08 6

FIGURE 1 - WebSocket protocol fuzzing payload as viewed in wireshark

Fuzzing payloads were generated using both afl-fuzz and honggfuzz built-in

functionality. Test cases and the fuzzing implementation will be provided after report

publication and internal review.

Static Source Code Analysis

The engagement team executed the Checkmarx scanner against the Beast codebase to

achieve additional coverage and supplement the manual source code review and

fuzzing activities. Specifically, Checkmarx CX version 8.1.0 was used.

While Checkmarx did flag issues in third-party zlib library test code that were deemed

unimportant, it flagged only three informational issues in the Beast core folder that the

assessment team did not consider important enough to include in this report. Due to

the time-boxed nature of the engagement and sparse static code analysis results, the

assessment team focused on thoroughly fuzzing the server to uncover issues.

Manual Source Code Review

In addition to the fuzzing activities, the assessment team devoted a considerable

amount of time to manual source code review with the purpose of both identifying

vulnerabilities and understanding how the Beast library actually works. Due to the time-

boxed nature of the engagement, an exhaustive line-by-line review was not performed.

The manual source code review focused on the HTTP message parsing code, the

WebSocket protocol implementation, and the WebSocket per-message deflate

extension implementation via a ported zlib library. The Insecure Randomness finding

detailed below was identified as a result of the manual review.

Bishop Fox™ Confidential 2017/12/08 7

Summary of Findings

The assessment team identified the following issues as a result of the time-boxed

assessment of Beast library version 124:

Denial of Service — The assessment team successfully demonstrated three denial-of-

service attacks against Beast by sending malformed WebSocket frames containing a

compressed payload. The issues were identified by fuzzing the WebSocket server code

responsible for uncompressing client messages.

Insecure Randomness — Beast uses an insufficient source of entropy as a seed value

to a linear congruential generator (LCG) in order to generate random values that serve

as the masking value when WebSocket client frames are sent. In special circumstances,

an attacker may be able to exploit this issue to poison HTTP caches served from

improperly implemented intermediaries.

At the time of this writing, no other issues have been identified. Please refer to the

Assessment Report below for a technical description of the issues, which also includes

steps that can be taken to mitigate the risk.

OBSERVATIONS

• Library Functionality — The Beast library provides a set of classes, derived

from and consistent with the popular Boost ASIO networking library, to assist

developers in writing networking applications that serve HTTP/S clients or

consume HTTP/S services. In addition to supporting HTTP 1.0 and 1.1 protocols,

the library also implements WebSocket communication functionality. The Beast

library relies heavily upon features in the C++11 standard.

• Security Features — The Beast library does not implement specific security

features related to common web applications. It is the responsibility of library

consumers to understand web application security vulnerabilities they may be

exposed to, and to develop their applications to account for those issues. This

includes vulnerabilities such as cross-site scripting (XSS), cross-site request

forgery (CSRF), application-layer denial of service, insecure SSL/TLS configuration,

path traversal and file disclosure, command injection, UI redressing, and HTTP

header-related vulnerabilities (e.g., insecure cookie settings, HSTS, CORS). The

Open Web Application Security Project (OWASP) is a great resource for

developers to learn more about common web application security issues.

Bishop Fox™ Confidential 2017/12/08 8

SECURE DEVELOPMENT R ECOMMENDATIONS

Developers should consider the following recommendations when writing applications

that use the Beast networking library:

• Perform Strict Input Validation — Treat all untrusted input as potentially

malicious or malformed, and validate according to length, type, range, and

format. Prefer whitelisting of inputs (rejecting based on a known valid set) to

blacklisting (accepting based on a known invalid set), when possible. Please refer

to Appendix B for additional information regarding the expectations developers

should have when implementing secure applications using the Beast library.

• Harden Builds with Compile-time Security Flags — Depending on the target

architecture and toolset, use available compile-time flags to harden application

builds. Common flags include GCC’s -pie or -fPIE to enable address space

layout randomization (ASLR), -fstack-protector-all for stack guard

protection, and -WI,nxcompat, used on Windows to enable Data Execution

Prevention (DEP). Additional informational flags such as -Wall, -Wextra, and -

Wformatsecurity should be enabled to alert developers to problematic code. It

is recommended that -Werror be included to turn warnings into compile-time

errors. These flags may or may not be included by default as part of the build

environment, and it is the responsibility of the developer to understand whether

the flags are enabled and how they may impact the compiled binary and

application performance. Consult relevant compiler documentation and security

resources for information about supported security flags.

• Conform to SEI CERT C++ Standards — The SEI CERT C++ Coding Standard

enables developers to write secure and reliable systems by documenting a set of

common security pitfalls in the C++ language. The collected recommendations

are provided as a publicly available PDF document, a link to which has been

included in the Additional Resources section below. As there are a large number

of rules included in the standard, developers are encouraged to check their

applications for standard violations using TS 17961-compliant static source code

analysis tools.

• Avoid Exposing Implementation Details — The Beast library includes a version

string that is exposed in responses as a header field in the advanced-server

example (as of Beast version 124). While exposing this information is not

necessarily a security vulnerability, it can help attackers identify vulnerable

Bishop Fox™ Confidential 2017/12/08 9

versions of the library and automate attacks against those versions. Developers

should avoid disclosing this information in publicly facing environments.

• Utilize Encrypted WebSocket Connections — WebSocket developers should

enforce encrypted (wss://) WebSocket connects for any application that deals

with sensitive data, such as authentication credentials, business data, and

personably identifiable information.

• Stay Current with Latest Patches — Ensure on an ongoing basis that Boost,

Beast, and any other supporting libraries (e.g., OpenSSL) are up to date with the

latest patches, and rebuild the application to include the patched versions.

ADDITIONAL RESOURCES

Beast

https://github.com/boostorg/beast

Beast v.124 Commit

https://github.com/boostorg/beast/tree/9dc9ca13b9c08c1597d05bcf6c19be357e426041

Boost C++ Libraries

http://www.boost.org/

SEI CERT C++ Coding Standard

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Open Web Application Security Project (OWASP)

https://www.owasp.org/index.php/Main_Page

Public Key for Beast Author Vinnie Falco

https://api.github.com/users/vinniefalco/gpg_keys

Bishop Fox™ Confidential 2017/12/08 10

ASSESSMENT REPORT

The author of the Beast networking library, Vinnie Falco, engaged Bishop Fox to assess the

security of Beast v.124 prior to inclusion in Boost as an official Boost networking library.

The following report details the findings identified during the course of the engagement,

which started on September 11, 2017.

Hybrid Application Assessment

The assessment team performed a hybrid application assessment with the following

targets in scope:

• Beast v.124

• https://github.com/boostorg/beast/tree/v124

• SHA1 commit hash: 9dc9ca13b9c08c1597d05bcf6c19be357e426041

Identified Issues

1 DENIAL OF SERVICE HIGH

Definition

Denial of service vulnerabilities occur when an attacker prevents authorized users from

accessing a resource. This type of attack arises in three ways. First, it can occur when the

transmission medium is disrupted between the user and the resource, leaving no path

for communication. Second, the target system may be coaxed to reset, oftentimes

repeatedly, which forces any established connections to also reset. Third, the target

resource is fooled into consuming all available computing resources, thereby leaving no

available resources to handle legitimate requests.

Details

The assessment team identified three denial-of-service vulnerabilities while fuzzing the

Beast per-message deflate implementation. These vulnerabilities were triggered when

the team used honggfuzz to fuzz the advanced-server example code using the

methodology described in the Fuzzing Strategy section above. The assessment team

used the zlib-flate command-line tool to generate the initial test case used by

honggfuzz:

$ echo “AAAAAAA” | zlib-flate -compress > test-case-dir/websocket-zlib-test-case.req

The raw bytes for the compressed payload are given in hexadecimal below:

Bishop Fox™ Confidential 2017/12/08 11

0x9c 0x78 0x74 0x73 0x03 0x04 0x00 0x2e 0xf5 0x08 0xd2 0x01

The assessment team launched honggfuzz against advanced-server using the

following command line:

honggfuzz -u --max_file_size=120 --timeout 1 -e req -f ~/Desktop/fuzzing/test-case-

websocket-zlib/ -- ./bin/gcc-5.4.0/debug/threading-multi/advanced-server 2

___FILE___

Executing the above command launched honggfuzz against the team’s customized

advanced-server binary:

FIGURE 2 - Fuzzing the WebSocket per-message deflate implementation with honggfuzz

The assessment team replayed individual crashes captured by honggfuzz against both

the customized advanced-server and an unmodified version from the Beast codebase.

Doing so resulted in the discovery of three different code paths that triggered assert

statements, resulting in the Beast server aborting execution. For example, the following

payload will trigger an assert:

0x8c 0xc1 0x76 0x42 0x1c 0x6b 0xea 0x90 0x2e 0x18 0x33 0x8a 0xc9 0x08 0x46 0x61 0xff

0xff 0x46 0xff 0xff 0xff 0x46 0xff 0xff 0xff 0x00 0x45

When replayed against advanced-server, the server process aborted with the

following error message:

$./bin/gcc-5.4.0/debug/threading-multi/advanced-server 1

'./SIGABRT.PC.7ffff6e22428.STACK.d99b8115e.CODE.-

6.ADDR.(nil).INSTR.cmp____$0xfffffffffffff000,%rax.2017-12-04.21:43:46.4380.req'

random port: 51010

read 27 bytes from ./SIGABRT.PC.7ffff6e22428.STACK.d99b8115e.CODE.-

6.ADDR.(nil).INSTR.cmp____$0xfffffffffffff000,%rax.2017-12-04.21:43:46.4380.req

advanced-server: /beast/boost/boost_1_65_1/boost/beast/websocket/impl/read.ipp:524:

void boost::beast::websocket::stream<NextLayer>::read_some_op< <template-parameter-

2-1>, <template-parameter-2-2> >::operator()(boost::beast::error_code, std::size_t,

bool) [with MutableBufferSequence =

Bishop Fox™ Confidential 2017/12/08 12

boost::beast::basic_multi_buffer<std::allocator<char> >::mutable_buffers_type;

Handler =

boost::beast::websocket::stream<boost::asio::basic_stream_socket<boost::asio::ip::tc

p> >::read_op<boost::beast::basic_multi_buffer<std::allocator<char> >,

boost::asio::detail::wrapped_handler<boost::asio::io_service::strand,

std::_Bind<std::_Mem_fn<void (websocket_session::*)(boost::system::error_code, long

unsigned int)>(std::shared_ptr<websocket_session>, std::_Placeholder<1>,

std::_Placeholder<2>)>, boost::asio::detail::is_continuation_if_running> >;

NextLayer = boost::asio::basic_stream_socket<boost::asio::ip::tcp>;

boost::beast::error_code = boost::system::error_code; std::size_t = long unsigned

int]: Assertion `zs.total_out == 0' failed.

Aborted (core dumped)

FIGURE 3 - Confirming application crash via command-line

Examining the Beast source code revealed the line responsible for raising the assert

(line number 524), which is highlighted below:

FIGURE 4 - Beast code responsible for assert

The individual payloads known to trigger the assert statements are included in the

Affected Locations section below.

Affected Locations

Source Files

• https://github.com/boostorg/beast/blob/v124/include/boost/beast

/websocket/impl/read.ipp#L521

• https://github.com/boostorg/beast/blob/v124/include/boost/beast

/websocket/impl/read.ipp#L524

• https://github.com/boostorg/beast/blob/v124/include/boost/beast

/websocket/impl/read.ipp#L542

Hexadecimal-encoded Payloads

• Payload 1 (triggers read.ipp:521)

Bishop Fox™ Confidential 2017/12/08 13

• 0x8c 0xc1 0x76 0x42 0x1b 0x6b 0x3e 0x10 0xac 0xe2 0x66

0x38 0x45 0x75 0x75 0xe4 0xe4 0x45 0x38 0xac 0x75 0x66

0xe4 0x45 0x45 0x75 0x8a 0xe4

• Payload 2 (triggers read.ipp:524)

• 0x8c 0xc1 0x76 0x42 0x1c 0x6b 0xea 0x90 0x2e 0x18 0x33

0x8a 0xc9 0x08 0x46 0x61 0xff 0xff 0x46 0xff 0xff 0xff

0x46 0xff 0xff 0xff 0x00 0x45

• Payload 3 (triggers read.ipp:542)

• 0x9c 0x53 0x74 0x73 0x03 0x04 0x00 0x2e 0xf5 0x08 0x37

0x99

Total Instances 3

Business Impact

The potential impact of a denial-of-service attack greatly depends on how and by whom

the application is used. Applications that deal heavily in financial transactions may suffer

both financial and brand damage as the result of a denial-of-service attack. An

unavailable application that provides critical business data may result in users not being

able to do their jobs.

In the case of the Beast HTTP networking library, three denial-of-service issues were

identified in the WebSocket per-message deflate implementation that resulted in

application crashes. Beast implementations that enabled per-message deflate on the

server to take advantage of the performance benefits of per-message deflate could be

the target of denial-of-service attacks by malicious actors aware of this vulnerability.

Recommendations

Denial-of-service attacks can occur through a number of vectors, and as a result, require

unique remediation activities. To prevent or mitigate the impact of denial-of-service

attacks, the assessment team recommends the following steps:

• For unpatched versions of the Beast library, disable per-message deflate as a

temporary mitigation.

• Update Boost to version 1.66.0, which is the first official public version of Boost to

include the Beast library. This release includes the fix for the vulnerability

described herein.

Additional Resources

Bishop Fox™ Confidential 2017/12/08 14

Beast v.124 Commit

https://github.com/boostorg/beast/tree/9dc9ca13b9c08c1597d05bcf6c19be357e426041

Compression Extension for WebSocket

https://tools.ietf.org/html/rfc7692

Application Denial of Service

http://www.owasp.org/index.php/Application_Denial_of_Service

RFC 7692: Compression Extensions for WebSocket

https://tools.ietf.org/html/rfc7692

Bishop Fox™ Confidential 2017/12/08 15

2 INSECURE RANDOMNESS MEDIUM

Definition

Insecure randomness errors occur when a function that produces predictable values is

used as a source of randomness in a security-sensitive context. Oftentimes, standard

pseudo-random number generators (PRNGs), which cannot withstand cryptographic

attacks, are used to generate random numbers for security purposes.

Details

The engagement team identified two vulnerabilities related to how Beast creates

WebSocket client frame header mask values, which are included in every client-initiated

WebSocket request. The WebSocket RFC requires that WebSocket client implementations

create frame mask values using a secure, unpredictable method in order to protect

against HTTP cache poisoning attacks. The following paragraph is taken from section

10.3 – Attacks on Infrastructure (Masking) of the WebSocket protocol as

described in RFC 6455:

Clients MUST choose a new masking key for each frame, using an algorithm that cannot

be predicted by end applications that provide data. For example, each masking could

be drawn from a cryptographically strong random number generator. If the same key is

used or a decipherable pattern exists for how the next key is chosen, the attacker

can send a message that, when masked, could appear to be an HTTP request (by taking

the message the attacker wishes to see on the wire and masking it with the next

masking key to be used, the masking key will effectively unmask the data when the

client applies it).

First, the team noted that Beast relied upon std::random_device to produce a

random value at the following location:

Bishop Fox™ Confidential 2017/12/08 16

FIGURE 5 - std::random_device used to seed std::minstd_rand

The result of the above operation was then used to seed the MINSTD linear congruential

generator via the C++11 standard library std::minstd_rand class:

FIGURE 6 - Frame mask values generated via std::minstd_rand

There are two problems with this approach. First, the random number produced by

std::random_device is not guaranteed to be a source of entropy, as the

implementation is platform specific. Second, even if the values produced by

std::random_device were secure, std::minstd_rand cannot be relied upon to

produce unpredictable values, as it is possible to brute-force the initial seed used by

observing a sequence generated by repeated calls to std::minstd_rand.

Affected Locations

Source Files

• https://github.com/boostorg/beast/blob/v124/include/boost/beast

/websocket/detail/mask.hpp#L65

• https://github.com/boostorg/beast/blob/v124/include/boost/beast

/websocket/detail/mask.hpp#L81

Bishop Fox™ Confidential 2017/12/08 17

Total Instances 2

Business Impact

The amount of unpredictability in a random number generator is directly correlated to

the level of security provided when it is used in a security-sensitive situation. If a

malicious user can even slightly predict the behavior of a random number generator,

they may be able to leverage this information to help breach the security of a system.

The unpredictability of the frame mask values helps protect WebSocket users against

HTTP cache poisoning attacks when unencrypted WebSocket messages are processed by

intermediary servers. The team found that the implementation of frame masking by

Beast could allow an attacker to replace the cache entry for a legitimate resource with

malicious data, thereby affecting the integrity of application data. Note: This issue affects

only WebSocket clients, as servers do not mask messages when communicating with

clients.

Recommendations

The root cause of this problem is two-fold. First, std::random_device may or may not

be deterministic, depending on the implementation, which is platform specific. Second,

std::minstd_rand is an LCG and not suitable for producing unpredictable random

numbers. The following recommendation is intended for the Beast developer in order to

remediate this issue:

• Replace the reliance on std::random_device and std::minstd_rand with a

cryptographically secure pseudo random number generator (CSPRNG).

To mitigate the risk of this issue, the assessment team recommends that Beast users

take the following steps:

• While not a perfect mitigation, enforce the use of WebSocket over SSL (wss://),

as the frame masking issue affects only intermediaries that process cleartext

WebSocket traffic. This may not resolve the issue for certain deployments that

terminate SSL connections and then forward the SSL traffic through additional

intermediaries.

• Upgrade to the latest version of Beast once this issue has been addressed.

Note: This issue affects only WebSocket clients implemented with Beast. Server

implementations are not affected and do not need to mitigate this problem.

Bishop Fox™ Confidential 2017/12/08 18

Additional Resources

Insecure Randomness on OWASP

http://www.owasp.org/index.php/Insecure_Randomness

CWE-330: Use of Insufficiently Random Values

http://cwe.mitre.org/data/definitions/330.html

Cryptographically Secure Pseudo-Random Number Generators

https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator

NIST: Random Bit Generation

https://csrc.nist.gov/projects/random-bit-generation

The WebSocket Protocol: Attacks on Infrastructure (Masking)

https://tools.ietf.org/html/rfc6455#section-10.3

Untwisting the Mersenne Twister: How I Killed the PRNG

https://www.bishopfox.com/blog/2014/08/untwisting-mersenne-twister-killed-prng/

Talking to Yourself for Fun and Profit

http://w2spconf.com/2011/papers/websocket.pdf

Bishop Fox™ Confidential 2017/12/08 19

APPENDIX A — MEASUREMENT SCALES

The assessment team used the following criteria to rate the findings in this report. Bishop

Fox derived these risk ratings from the industry and organizations such as OWASP.

Finding Severity

The severity of each finding in this report is independent. Finding severity ratings combine

direct technical and business impact with the worst-case scenario in an attack chain. The

more significant the impact and the fewer vulnerabilities that must be exploited to achieve

that impact, the higher the severity.

Critical Vulnerability is an otherwise high-severity issue with additional security

implications that could lead to exceptional business impact. Examples include

trivial exploit difficulty, business-critical data compromised, bypass of multiple

security controls, direct violation of communicated security objectives, and large-

scale vulnerability exposure.

High Vulnerability may result in direct exposure including, but not limited to: the loss

of application control, execution of malicious code, or compromise of underlying

host systems. The issue may also create a breach in the confidentiality or

integrity of sensitive business data, customer information, and administrative

and user accounts. In some instances, this exposure may extend farther into the

infrastructure beyond the data and systems associated with the application.

Examples include parameter injection, denial of service, and cross-site scripting.

Medium Vulnerability does not lead directly to the exposure of critical application

functionality, sensitive business and customer data, or application credentials.

However, it can be executed multiple times or leveraged in conjunction with

another issue to cause direct exposure. Examples include brute-forcing and

client-side input validation.

Low Vulnerability may result in limited exposure of application control, sensitive

business and customer data, or system information. This type of issue provides

value only when combined with one or more issues of a higher risk classification.

Examples include overly detailed error messages, the disclosure of system

versioning information, and minor reliability issues.

Informational Finding does not have a direct security impact but represents an opportunity to

add an additional layer of security, is considered a best practice, or has the

possibility of turning into an issue over time. Finding is a security-relevant

observation that has no direct business impact or exploitability, but may lead to

exploitable vulnerabilities. Examples include poor communication between

engineering organizations, documentation that encourages poor security

practices, and lack of security training for developers.

Bishop Fox™ Confidential 2017/12/08 20

APPENDIX B — SECURE DEVELOPMENT WITH BEAST

Developers who intend to implement the Beast HTTP library in their own products should

understand what is required in order to develop secure code. The Beast library is a low-

level HTTP and WebSocket networking library, and as such, does not implement security

controls found in modern, full-featured web application development frameworks.

Beast Security Features
The Beast HTTP library aims to provide the following security features:

• Secure HTTP and WebSocket Protocol Parsing — HTTP and WebSocket messages

are parsed in a safe, consistent, and efficient manner free of memory corruption

issues including stack and heap buffer overruns, and insecure use of freed or

uninitialized memory addresses.

• Fail Closed Operation — When unrecoverable errors are encountered, Beast

prefers to abort server execution rather than risk an unknown application state

affecting user and data security.

• Limited HTTP Field Validation — Beast performs limited validation and handling

for the Connection, Proxy-Connection, Content-Length, Transfer-

Encoding, and Upgrade fields. More information regarding these fields is available

here:

Boost: Beast Library – Protocol Primer

http://www.boost.org/doc/libs/master/libs/beast/doc/html/beast/using_http/protocol_prime

r.html#beast.using_http.protocol_primer.special_fields

Beast Developer Responsibilities

While not intended to be comprehensive, developers should be aware that it is their

responsibility to address the following security concerns:

• HTTP Header Security — Developers are responsible for implementing HTTP

header security as appropriate for their application. For example, applications that

convey an authenticated state via session cookies will be responsible for ensuring

that session IDs are generated securely, that the cookies are invalidated and deleted

when the current session exits, that the HttpOnly and secure flags are set, and

that the domain and path values are appropriate and not overly broad. Cleartext

sensitive data should never be stored in web application cookie values.

http://www.boost.org/doc/libs/master/libs/beast/doc/html/beast/using_http/protocol_primer.html#beast.using_http.protocol_primer.special_fields
http://www.boost.org/doc/libs/master/libs/beast/doc/html/beast/using_http/protocol_primer.html#beast.using_http.protocol_primer.special_fields

Bishop Fox™ Confidential 2017/12/08 21

Modern web application servers also utilize a number of HTTP headers to harden

their applications from attack and protect their users and data. This includes the X-

Frame-Options header, which is used to help prevent UI redressing attacks, and

the Strict-Transport-Security header, which is used to instruct user-agents

that HTTPS is required for all client-server communications.

Developers who use a header-based redirect via the Location field should be

aware that it is often a target of abuse by malicious users, and should take the

appropriate steps to mitigate that risk. For example, a developer may choose to

perform strict input validation against the Location value to forbid offsite

redirects, or to limit the target of those redirects to a set of whitelisted domains.

The Content-Security-Policy (CSP) header may be implemented to achieve

additional hardening of web applications against client-side malicious script

injection attacks (commonly referred to as cross-site scripting, or XSS). A CSP can be

used to limit the domains from which JavaScript can be sourced, prohibit the inlining

of JavaScript, and forbid JavaScript functions like eval, among other actions.

Developers that wish to expose their application to third-party domains may need

to implement cross-origin resource sharing via the Access-Control-Allow-

Origin and other Access-Control headers. CORS implementers must be careful

when parsing the HTTP Origin header value received from clients to ensure that

security controls cannot be bypassed.

Developers must exercise caution when outputting user-supplied values into HTTP

header fields. Failure to account for unexpected input, like the carriage return and

line feed, may allow a malicious user to construct a completely new HTTP response

with malicious input, potentially poisoning intermediary HTTP caches.

Please refer to the OWASP Secure Headers Project for additional information

regarding how to use HTTP headers to harden web applications from attack and

protect web application users and data:

OWASP Secure Headers Project

https://www.owasp.org/index.php/OWASP_Secure_Headers_Project

Bishop Fox™ Confidential 2017/12/08 22

• Cross-site Scripting (XSS) — One of the most common web application

vulnerabilities identified today is that of cross-site scripting, or XSS. This vulnerability

typically occurs when user input is reflected into web application HTML, JavaScript,

CSS, or other resources without appropriate validation and encoding. There are

three types, broadly speaking: reflected, persistent, and DOM-based. Developers

must validate input received from end users and choose the correct output

encoding when using that input in application responses. Please refer to the

following OWASP resource for additional information:

OWASP: Cross-site Scripting (XSS)

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

• WebSocket Security — Beast developers should be aware that they are

responsible for implementing authentication, authorization, and auditing controls

when using the Beast WebSocket library. Implementations should perform strict

validation of any user-supplied Origin values to ensure they match expected

values, and Origin should not be relied upon to make security decisions as it is

easily forged. Applications that send authentication credentials or sensitive user

and/or business data should enforce the use of WebSocket over TLS (wss://).

Please refer to the following OWASP resource for additional information:

OWASP: Testing WebSockets

https://www.owasp.org/index.php/Testing_WebSockets_(OTG-CLIENT-010)

• TLS Security and Certificate Validation — Beast developers who wrap HTTP and

WebSocket streams in TLS are responsible for validating server and client

certificates (when performing mutual authentication). Developers will be

responsible for ensuring that their code uses an up-to-date version of OpenSSL, a

secure version of the TLS protocol (TLS 1.2 is the latest, non-draft version at the time

of this writing), and secure cipher suite algorithm (e.g., AES/GCM). While modern

OpenSSL libraries typically support certificate validation routines (e.g., checking the

hostname or expiration date), developers are responsible for understanding what is

supported by the library versus what must be directly implemented. Please refer to

the following resource for additional information:

Bishop Fox™ Confidential 2017/12/08 23

OpenSSL Wiki: SSL/TLS Client

https://wiki.openssl.org/index.php/SSL/TLS_Client

• Path Traversal — Web application servers commonly serve files and other media

based on the URI supplied by clients. Path traversal vulnerabilities can occur when a

web application server does not validate the user-supplied URI path data to retrieve

these files. Beast developers are responsible for validating URI paths; canonicalizing

the supplied path to a single, unambiguous representation; and restricting resource

requests to only an approved set of files and directories under the web application

root directory. Please refer to the following OWASP resource for additional

information:

OWASP: Path Traversal

https://www.owasp.org/index.php/Path_Traversal

• Server-side Request Forgery (SSRF) — Server-side request forgery vulnerabilities

occur when an application accepts unvalidated user input and then uses that input

to typically fetch an HTTP resource. Beast implementations that use the library to

fetch HTTP resources on behalf of users must validate the request to ensure that

users can only request resources from approved domains, URI paths, and ports.

Failure to validate this data may allow a malicious user to fetch resources from

internal networks, the server's file system, and probe the internal network for

interesting services. Please refer to the following resource for additional

information:

OWASP: Server-side Request Forgery

https://www.owasp.org/index.php/Server_Side_Request_Forgery

• Cross-site Request Forgery (CSRF) — Cross-site request forgery, or the confused

deputy problem, exists due to the stateless nature of HTTP applications and how

cross-domain requests are treated with respect to the automatic forwarding of

session cookies. Essentially, attackers who lure users to a site under their control

may be able to force those users to perform an unauthorized action on a web

application they are authenticated with if that web application does not implement

the proper safeguards. A common way to mitigate CSRF vulnerabilities is by double

POSTing session cookie values, or including an additional anti-CSRF token in the

Bishop Fox™ Confidential 2017/12/08 24

body of each POST operation, or as a custom header. Developers are responsible

for implementing anti-CSRF controls in their web applications if the applications

support authenticated user sessions. Please refer to the following OWASP resource

for additional information:

OWASP: Cross-site Request Forgery (CSRF)

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

• Additional Vulnerabilities — The above vulnerability classes and security

considerations represent a handful of those that developers may encounter when

using the Beast library. Depending on the application under development, and

integrated technologies, developers need to be aware of additional vulnerability

classes including but not limited to: SQL injection (SQLi), command injection, LDAP

injection (LDAPi), XML external entities (XXE) injection, template injection, time-of-

use-to-time-of-check attacks, insecure process privileges, insecure cryptography,

and insecure randomness, among many more. As it is beyond the scope of this

document to detail each of the aforementioned vulnerabilities, developers are

encouraged to review public security resources to better understand their

responsibilities and how these security risks can be mitigated in their own

applications. Please refer to the following resources for additional information:

OWASP

https://www.owasp.org/index.php/Main_Page

OWASP: Top 10 2013

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

asdf

